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J .  Phys. A: Math. Gen. 24 (1991) 557-568. Printed in the UK 

Polynomial states for SU(3) and SO(5) in a Demazure-Tits 
basis 

Hubert de Guiset and R T Sharp 
Department of Physics, hlcGill University, Montreal, Quebec, H3A 2T8, Canada 

Received 30 July 19W 

Abstract .  We cons1,nict basis stales for SU(3) and for SO(5) that are polynomials 
in the states of the furidanierit.al representations; they are  reduced according to the 
finite Denlamre-Tias snbgroup, which acts  on basis states in the same manner that 
the Weyl group acts VI, weights. 

1. Introduction 

T h e  Demazure-Tits (DT) group (Demazure and Groethendieck 1963, 1964, Tits 1966, 
Michel et 01 1988) of a simple compact Lie group is an extension of its Weyl group; 
whereas the Weyl group acts on weights, the  DT group acts on basis states and is a 
subgroup of the Lie group in question. 

When an  element of the DT group acts on a state i ts  weight is Weyl-reflected; 
accordingly Weyl orbits are not mixed and  orbit labels can be used as state labels; 
we will see below how additional lahels can be introduced to remove the remaining 
degeneracy. 

In section 2 we derive basis states for SU(3), reduced according to DT; they are 
polynomials in the basis states of tlie (1,O) and (0 , l )  (fundamental) representations. 
In section 3 the same task is carried out for SO(5). Section 4 contains some concluding 
.am3rllC ;..rl..,l;.3n. ., A;o.-,,ec;a.7 _., +La nf lhn d a t n e  +- rnmnllin rrn..nv.tnr m9ir;.. .C.llU.nl, L,L".YY,.,6 U Y.lrY.Io."I, *,.> I,yb "I "..- ..yyyII -"...I,UU' 61..".y"v. ,.lU"L.ll 

elements in a DT basis. 

2. SU(3) 3 DT basis statcs 

We construct basis states of the irrep (11, y) of SU(3) as polynomials of degree p in 
711, 7 1 2 , 7 1 3 ,  the basis states of tlie irrep ( l , O ) ,  and of degree 9 iii 7);,7$,q:,  the basis 
states of the  irrep (0 , l ) .  Tliese fiiiidaniental states are sliown i n  figure 1. 

Since Demazure-Tits tra.ns[orinatioiis do not change the (Weyl) orbit it is conve- 
nient to begin wit,h tlie SU(3) orbit-generating fuiict,ion (Michel e t  01 1988): 

F ( P , Q ; A , E )  = ( I -PQ)- '{ [ ( l -  P3)(l-P'B)(I-P..1)]-' 
+ [ ( I  - P2B) (  I - P A ) (  1 - QB)]- 'QB 
+ [ ( I  - P A ) (  I - QB)(  I - Q?A)]-'Q'A 

(2.1) 
3 - 1  3 + [ ( I - Q B ) ( 1 - Q 2 A ) ( 1 - Q  )I Q I 

t Present addres: Department of Pl~ysics, Unirersity of Toronto, Toronto, Ontario, M5S 1A7, 
Canada. 
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Figure 1. States of the fundamental imps of SU(3) 

In the power expansion of F the coefficient ofPPQqAaBk is the multiplicity o f the  orbit 
[a, b] in the irrep ( p ,  n); the orbit labels a, b are the (non-negative) components of the 
highest weight of the orbit. We call the eight terms P 3 , P 2 B  etc in (2 .1)  elementary 
orbits; they form an integrity basis in the sense tha t  the general orbit is represented 
by a product of powers of them. 

The  generating function (2 .1)  not only counts orbits but implicitly instructs how 
to construct the relevant states. Before giving explicit expressions for the elementary 
orbits (more precisely for their highest states) we must examine the SU(3) character 
or weight generating function (Pa tera  and Sharp 1979) 

G(P ,Q;A,B)  = [(l- PA)(l-PB- ' ) ( l -QB)(l-QA- ' ) ] - '  
x {(I - PA-'B)-' + (1  - QAB-')-'QAB-'}. (2.2) 

The  correspondence with actual states is given by P A  - ql ,  PE-' - q3, QB - q;, 
QA-' - q; ,PA- 'B - q2,QAB-' - 7;. The orbit-generating function (2 .1)  is the 
non-negative degree part ,  in A and E ,  of (2 .2) .  The  expansion of (2.2) consists of 
products of powers of q2, q3, q l ; , i $ , q j ,  with q2q; never appearing together; such 
products of powers of the states of the fundamental irreps constitute a consistent listing 
of the states of all irreps ( p ,  q )  of SU(3) with p and q the degrees in the unstarred and 
starred variables respectively. v2q; never appear together because of the 'unwanted' 
scalar B = qlq; + q2qi + q3q$; any s ta te  containing it as a factor would belong to an 
irrep lower than  indicated by its degrees. We formally set B = 0 and replace q2q; by 
-qlqy - q3qlj wherever it appears. 

The  explicit form of the elementary orbits now may be taken as follows: 

p 3  '11 '12'13 P 2 B  - 711'12 P A  N qi 

QB - 4. - 44 Q3 y q;q4qj (2.3) 
(PQ) i  - '13'1; -w?qiq; 

where w is the primitive cube root of unity exp(2ai/3). 
Until further notice we ignore the two 'centre orbits' (PQ) , , (PQ) ,  (they occur 

at the centre of the octet irrep (1,l)). At the end powers of them will be coupled to 
orbits obtained from the other six. T h e  variable qi now never appears multiplied by 
q;, so it is convenient to write q; = 7,:' (7, and 71; have opposite weights). 

I t  is easy to verify tha t  a term PPQqA"B* appears no more than once in the 
expansion of (1 - P Q ) 2 F ( P , Q ;  A ,  E ) ;  orbit multiplicities greater than one arise later 
from coupling to powers of the centre orbits (PQ) , , (PQ) , .  

The  DT subgroup of SU(3) happens to be isomorphic to 0, the subgroup of SO(3) 
that leaves the cube invariant (for a discussion of 0, see for example Lomont 1959) .  

We obtain standard matrices for the generating elements R I ,  R, for each irrep of 
DT by the use of prototype basis states. For the defining irrep, r4, we use ql ,  q?, q3, 

(PQ)z - -'13$ + wflil); 
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as prototype states with phase conventions as in Michel et 41 (1988). Then 

For the scalar irrep r1 we have 

'*, U - U  - 'L, - - 1  - 1. (2.5) 

For the one-dimensional irrep r2 we use the prototype state q,q2q3. Then 

R, = R, = -1. (2.6) 

For t h e  two-dimensional irrep Ts we choose the prototype basis states as, respec- 
tively (PQ)l and ( P Q ) 2  of (2 .3) .  Then 

Finally, for r5, we take prototype states as, respectively, q2r13, q3q1 ,qlvz. Then 

At th i s s t age  thegene ra l s t a t e i s l r s l )  = q i $ q i ,  with weight { a , b }  = {r - s , s - t } .  

has r 2 s 2 t ;  i ts  weight [a,b] labels the orbit. The  (later) coupling to the centre 
orbits (PQ)l, (PQ),  changes neither the orbit (or weight) labels nor the difference 
p - q;  hence we may write 

The dominant stateofan AI. -  -^--I --"_ :l.-,l I... + h - " L L &  L.-A -:Aa..$/? 1 \  
LIIIC. "U= "CDLLL"C" " J  UIIC: " ~ " b - " a 1 "  D l U F  "L (&.L,, 

r =  & ( p - y + Z a + b )  
s ~ I,.. g(Y - y - U + :j 
t = $ ( p -  y - a  - 2b) 

(2.2) 

The six states of the  orbit (we assume r > s > t )  are 

11) = Irst) 12) = Istr) 13) = Itrs) 

14) = 1st)  15) = Iris) IS) = Itsr). 
(2.10) 

The DT irreps contained in the orbit may be found with the help of the  DT character 
table (Lomont 1959, hlichel el  a/ 1988) and the  character of the orbit. The action of 
the generating elements on the orbit states is 

(2.11) 

We must consider four cases. 
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Case 1. a, b both even; r ,  s, t have the same parity. The DT content of the orbit is 
rl e r2 e 2r3 .  

From RllYlt) = R21:xt) = we find the rl state 

1:;) = 11) + 12) + 13) + Xl4) + X15) + XIS) (2.12) 

with X = ( - l )r  = (-1)* = (-1)j. 
From RI[::) = R,I::) = -IF2') we find the r2 state 

1;;) = 11) + 12) + 13) - X14) - X15) - X16). (2.13) 

From RlR21$3tl) = w 2 l i r , > )  r s t  we find two states, 

the notation123i) denotes the kth component of the ith copy of the r3 irrep in the 
orbit coresponding to rst .  The two second components are found by applying R2 to 
the first components: 

=X15)+Xw214)+~w16) = ~ 1 2 ) + X w 2 1 1 ) t X w ( 3 ) .  (2.146) 

Case 2. Q ,  b both odd; the parity of s is opposite to that of r and t .  The DT content of 
theorbit i s r 4 @ r 5 .  The first component of the r4 irrep is found from R21;t;) = l p , l ) .  P l t  

The other components are then obtained from I,?;) = Rllp,l) rst and 1;:;) = R21{Zi). 
We find 

Case 3. a even, b odd; 1's parity is opposite to that of r and s. The DT content is 
r4 e r5. 

We find 
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Case 4. a odd b even; the parity of r is opposite to tha t  of s and t .  The  DT content 
isr4@r5. Wefind 

with X = (-l)r = - 

' s t  ) = 12) - ,416) (2.19) 
r43 

) = 12) +X16). (2.20) 
r53 

We find the  states of a triangular orbit by treating it as a special case of a hexagonal 
orbit. Both types of triangular orbit are handled simultaneously by letting the state 
qiqi~& represent the orbit with r > t for a [O,b] orbit and r < t for an [a,O] orbit. 
The  states 14),15), IS) of the hexagonal orbit become equal to the states Il),12),13), 
respectively. 

For case 1 ( b  even) we see from (2.11)-(2.13) that  for r even X = 1 and the rl 
state survives while the r2 s ta te  vanishes; for r odd X = -1 and the r2 s ta te  survives 
while the rl s ta te  vanishes. In both cases the  two r3 irreps become identical so the 
second should be ignored. 

For case 3 ( b  odd) wesee from (2.17) and (2.18) that  the r4 irrep survives and the 
F5 irrep vanishes for r even, the reverse for r odd. 

The  point orbit (a = b = 0 )  has r = s = t .  The three states of the triangular orbit 
become identical. Then the  r3 states vanish; only the rl state survives if r is even, 
only the r2 s ta te  if r is odd, not a surprising result since the state is (qlq2qa)'. 

We call the  states I$>;), developed up to now, 'orbit states';  i labels a copy of 
the DT irrep r,, and k labels its component in the orbit [a, b] = [r - s, s - t ] ,  [t - r ,  01 
when t > r and s = r. Although they are mutually orthogonal and  could easily he 
normalized, we have not bothered to do so, because the coupling to the centre orbits, to 
be accomplished next, would spoil the normalization and introduce non-orthogonality. 
The  orthogonalization would then be impossible except say by a Schmidt procedure 
or numerical diagonalization of a metric matrix. In section 4 we argue tha t  for most 
practical purposes, for example determination of generator matrix elements, there is 
little to he gained by orthonormalization. 

The  centre states ( P Q ) l  and ( P Q ) ?  belong to the point orbit in the SU(3) ir- 
rep (1,l); they span the DT (or 0) irrep r3. The orbit states developed earlier in 
this section must now be coupled to powers of them. Patera el a1 (1978) have given 
generating functions for polynomial tensors in the components of r3 (as well as of 
other tensors). They are 

(2.21a) 
(2.21 b )  

B(r,,r,;X) = [ ( i - x 2 ) ( i  - ~ ~ ) ] - ~ ( x + x ~ ) .  (2 .2 lc)  

Equation (2.21a) tells us tha t  there are two elementary scalars (r, tensors) of degrees 2 
and 3 and that all scalars are products of powers of them. Equation (2.21b) says 
there is one elementary r2 tensor, of degree 3 ,  and other r2 tensors are obtained by 
multiplying by products of powers of the elementary scalars. Equation ( 2 . 2 1 ~ )  informs 
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us there are two elementary r3 tensors of degrees 1 and 2 and that others are obtained 
by multiplying by products of powers of scalars. 

The elementary scalars are easily found to be ( P Q ) l ( P Q ) z  (degree 2) and (PQ):+ 
(PQ);  (degree 3). The elementary rz tensor is (PQ): - (PQ);. The elementary r3 
tensors are (!;:{:) and ( igz; ; ) .  We denote centre states by lg$); c and d are the 
powers of the quadratic and cubic scalars respectively. The labels g and i are needed 
only when h = 3; then g = 1 denotes the linear and g = 2 the quadratic r3 tensor; i 
labels the component. 

SU(3) 3 DT states in tbeir final form are obtained by coupling centre states to 
orbit states with the help of DT Clebsch-Gordan coefficients. We denote an SU(3) 3 
DT state by l ~ g r ~ $ ~ r z , , ) ;  we suppress d because of (2.22) below. Here p, q are SU(3) 
representation labels and a,  b are orbit labels. The values of r, s, t ,  needed for the orbit 
states, are generally given by equation (2.9), with a ,  b 2 0 and hence r 2 s 2 1;  the 
exception is an orbit w.ith Q > 0 , b  = 0; then we set a = 0 and b = -Q in (2.9), so that 
t > r = s. We write p' = C(positive exponents of r,s, t ) ,  q' = -C(negative exponents 
of 7 ,  s, t ) .  Then 

H de  Guise and R T Sharp 

p = p' i 2c+ 3d + m q = q' + 2 c +  3d-t m (2.22) 

where m is 0 if i = 1, 3 if i = 2, g if h = 3; c, d,  g, rh are as in the notation for the 
centre states in the preceding paragraph. j and r i  are as in the notation for orbit 
states, equations (2.11)-(2.19), with j needed only for r3 in a hexagonal orbit. The 
centre irrep rh and the orbit irrep rk are coupled with DT Clebsch-Gordan coefficients 
to give all possible irrep r,, component m. 

Table 1. Clebsch-Gordan series for DT SU(3). The irrep Ti in denoted simply by i. 

1 2 3  4 5 
1 1 2 3  4 5 
2 2 1 3  5 4 
3 3 3 l e 2 8 3  4 @ 5  4e5 

The necessary DT Clebsch-Gordan series (h = 1,2,3)  are shown in table 1. The 
relevant non-zero Clebsch-Gordan coefficients are given below 

r3 x r3 - rl : 

r3 x r3 - rz : 

r3 x r3 - r3 : 
r3 x r4 - r4 : 
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For r3 x Ts - r, and r3 x r5 - r5 Clehsch-Gordan coefficients we remark tha t  

3. SO(5) 3 DT basis states 

We construct basis states of the  irrep ( p , q )  as polynomials of degree p in 
the basis states of the irrep (1,O) and of degree q in 
irrep (0,l). They are shown in figure 2. 

. . , E 5  
. . , q4 the basis states of the 

.t? 11 
.e2 

14 1 2  
0 5 5  

e T- E4 '3 
.E3 

Figure 2. States of the fundamental imps of SO(5) .  

As for SU(3) i t  is convenient to start  with the SO(5) orbit generating function; it 
is given incorrectly by Michel el  ai (1988). We correct their misprint and  also rewrite 
it in a form t ! ~ !  hzs t!ie centre orbits p and ( & 2 ) i ,  (&2).2 3 co-moc f zc tos ,  B ~:olre 
convenient version for our use. I t  is then 

F ( P , Q ; A , B ) = [ ( 1 - P ) ( 1 - Q 2 ) 2 ( 1 - P A ) ] - ' [  1 + (P2) (QB)  + PQB + PQ2 
(1 - P2) (1  - P 2 B z )  

(3.1) 

The orbit generator implicitly tells us  how to construct the states, but again we need 
guidance from the character generator (Patera and Sharp 1979) which we rewrite in 
a more convenient form 

G(p,&;A,Ua) = [(: - pj(1 - , D A - ' ) ( !  - &AB-L\,? A D \ l - I  
j i '  - vu11 

x ([(I-QB-')( 1-QA-'B)]-'+[(l-QA-'B)(1-PPA-1B2)]-1PA-1B2 
+[( l - P A - ' B ' ) - ' ( l -  P A ) - ' ] - ' P A + [ (  1 1 -  - P A ) (  P A B - 2 ) ] - ' P A B - 2  
+ [( 1 - PAB- ' ) (  1 - Q E - 1 ) ] P Q A E - 3 } .  (3.2) 
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The correspondence with the fundamental states is as follows: PA-<,,  PA-'B2-<,, 
PA-'-&, PAB-2-- t4 ,  P - t 5 , Q B - q l 7  QAB-1-72,QB-'-~3,QA-1B-~4. 
The orbit generator (3.1) is the non-negative part, in A and E ,  of the character 
generator (3.2). 

t27l3, <,q4, E4q4 never appear together in (3.2); for a consis- 
tent listing of states in an  irrep ( p , q ) ,  with p , q  the degrees in the t and 7 variables 
respectively, we eliminate these combinations wherever they appear by setting to  zero 
the unwanted states <1E3-F2<4+ <571+21i2(t1 O4-t2S2)> -&.V2+21i2(c4% +<1O3)1 

-<5~4+21'2(E3~1+E2q3), €573+21i"(€3~2-€4f14). The first belongs to the irrep (O,O), 
the other four to the irrep (0 , l ) ;  a state containing any of them as a factor belongs to 
representations lower than its degree would indicate. 

We now give the dominant states of the elementary orbits implied by the orbit 
generator (3.1). Eight appear in denominator factors, two appear only in a numerator. 
For the denominator elementary orbits, the correspondences are 

p - €5 P A - t i  QB - 71 Q2A - 7102 
P2 - t 1 t 3  + it: P2B2 - € I t 2  (&*)I - 71% (Q2)2  - -O2O4 

and for the numerator elementary orbits we have 

H de Guise and R T Sh.arp 

The pairs t2F4, 

(3.3) 

PQB- t 2 7 2  - afi?11€5 PQ2 - E30192 + i f i t571%- i f i t 5 0 2 7 4 .  (3.4) 

For the time being we ignore the point elementary orbits P,P2,PQ?, (Q2)1 and 
(Q2),. They can be coupled a t  the end and will not change orbit labels. Then there 
are three types of orbit, which are analysed below as cases 1,2 and 3. 

The character tabie of DT SO(5) is given by Michei et a i  (iSSS) aiong with a 
representative element of each class. The irreps r1-4 and are one dimensional; 
the other six are two dimensional. Standard matrices for the generating elements 
R,  and R, can be reconstructed for each irrep from the states given below (under 
cases 1-3) with the help of their action on the fundamental states: 

The DT content of each type of orbit is determined with the help of the character 
table. The states themselves are then found straightforwardly. The notation is li, Tj, k )  
where rj is the irrep (we adopt the labelling of Micliel el al(l988)) k is the component 
label, where necessary, and i labels the copy, when there is more than one in the 
orbit. We assume the exponents z , y ,  z all greater than zero, hence octagonal orbits. 
Afterwards we mention what happens i n  degenerate (square) orbits. 

Case 1. The dominant state is c;tY<:?l; . Let ( a , b , c , d , e , f , g , h )  denote aE1 &o, + 
b€:t;" 7; f c€;+'€C: O; + d€:C," ty O; + ~ € 3  €4 03 + f E3F4 73 ~ E I  €4 '12 f h t i  €4 'l?. 
Then (a = ( - 1 ) Y )  

Z t Y  Y z 

r + y  Y i Y =+Y '+ Y = t y  I Z t Y  Y 2 



Irlo, a) = (o,o, 1, -ia, O,O, -ia, 1) 
lrI1,2) = (o,o, l,ia,O,O,ia,l) 
lrlz,a) = (o,o, -l ,- ia,  O,O, i ~ ,  i) 
lrI3,2) = (o,o, -i,ia,O,O,-ia, 1).  



Ir,) = ( l , - ia ,  - i ,  -a ,a , i ,  a ,  -1) 

Ir,) = ( l , - ia , i ,a ,a , i ,  -in, 1) 
p,r14z) = ( ~ , o , - i , ~ , o ,  o,-ia,-i)  
p,r14,z) = ( - i , -a ,o ,o , ia ,  - i , o , o )  
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The states of degenerate, or square, orbits (a,O) or (0,b) are obtained as special 
cases of the generic, or octagonal, orbit states above. 

For case 1, with I = 0, z even we find that the states [rl), [r2), l l , r 5 , i )  vanish for 
y odd while IPS), IF4), 12r5, i) vanish for y even; for E = 0, z odd Irlo, i) and 11',1, i) 
vanish for y odd while lrI2, i) and lrI3, i) vanish for y even; for y = z = 0, I even Ir,) 
and Ir,) vanish and ll,r5, i) = 12,r5,;); for y = z = 0,z odd, Ir,) and [r,) vanish 
while l 1 , r l4 , i )  =I2 ,r l4 , i ) .  

For case 2: with y = 0; z +  z even? !rl) and !r3) vanish for z and z odd while [I??) 
and Ir,) vanish for I and z even; ll ,r5,i) = 12,r5,i) for z and z even or odd. For 
z = 0, z + z odd, Ir,) and IF,) vanish for z even while Ire) and Ir,) vanish for E odd; 
12,rl4,i) = i l 1 , r l 4 , i )  for z even or odd. For z =  z = 0, lrI2, i) and lr13,i) vanish for 
y odd, while lr3), Ir,) and 12,r5,i) vanish for yeven. 

For case 3 with E = 0, z even, Irlo,i) and Irll,i) vanish for y even while 1r12,i) 
and lr13,i) . .. . vanish for y odd. With E = 0, z odd, !I'l), Ir,) and !l,r5, i) vanish for y 
even while lr3), Ir,) and 12, rs , i )  vanish for y odd. 

Filially we must couple the point orbits t o  the states already constructed. The 
orbit-generating function (3.1) tells us which point orbits may he combined with which 
of the states listed under cases 1-3 above. Thus, PQ2 may be multiplied by the states 
of case 1 for which z = 0; any power of P 2  may be multiplied by the states of case 1 for 
which z = 0 or 1 ,  by the states of case 3 for which z = 0 and by any state containing 
PQz as afactor. Since the point orbits P and (Q2)1,  (Q'), are in common denominator 
factors, any powers of them can be coupled t o  any other state. All the point orbits, 
with the exception of (Q2)1 ,  (Q2) , ,  belong to one-dimensional representations of DT, 
so coupling them is trivial. 

(&2)2 span the two-dimensional irrep r5 . We follow Patera ei a/ (1978) in 
constructing DT tensors whose components are polynomials in ( Q 2 ) ] ,  (Qz)z . Their 
construction tells us that there are rl  tensors (scalars) of degrees 2 and 4 ,  a r? tensor 
and a r3 tensor of degree 2 ,  a r4 tensor of degree 4, and T5 tensors of degrees 1 
and 3. Any of these can be multiplied by powers of the scalars to obtain higher-degree 
tensors. It is trivial, and left to the reader, to find the polyuomial tensors and the D T  
Clebsch-Gordan coefficients needed to couple the r5 irreps to two-dimensional irreps 
in the orbit states already analysed (or see de Guise (1989)). 

4. Concluding r e m a r k s  

In this section we make a few comments about applications of our basis states, in 
particuiar their potentia,i use in the calcuiation of generator matrix elements. 

Our states of degrees p , q ,  respectively in the variables of the two fundamental 
irreps are in one-to-one relation to the actual ( p , q )  states in a DT basis, but as given 
they contain admixtures of states (of the same DT irrep) belonging to lower represen- 
tations of SU(3) or SO(5). This turns out not to be a problem for the calculation of 
generator matrix elements. In the case of SU(3) one has  formally only to replace qi 
and 0: by the traceiess Variables qi and qi* described by Patera ei ai ji989j. T i e  
primed and unprimed variables transform in the same way under finite SU(3) trans- 
formations, or under the action of SU(3) generators. No such traceless variables are 
available for SO(5) (but see Lohe and Hurst (1971) for a redefinition of the variables 
which eliminates the presence of the scalar quadratic in them); however, the same 
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effect is achieved by operating on each state with an operator P which is an instruc- 
tion to retain only the irrep ( p ,  q )  part of its operand. Since P commutes with SO(5) 
generators (or finite transformations) one can ignore the role of P and work with the 
states as they stand. 

The generators should of course be organized into DT tensors, transforming by r3, 
r4, Ts for SU(3) and by r l ,  rz, ra, r9, 2r5, r14 for SO(5) and their matrix elements 
presented as reduced matrix elements multiplied by DT Clebsch-Gordan coefficients. 
Because of the non-orthonormality of the basis states the matrix elements Eij of a 
generator E should be defined by 
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and not through a scalar product. They can still be multiplied as matrices, and 
functions of them, for example a Hamiltonian that lies in the enveloping algebra, can 
be diagonalized conventionally and eigenstates found as linear combinations of basis 
states. 

The methods of this paper could be extended to obtain DT basis states of higher 
groups, but the work becomes rapidly more tedious because of the increasing com- 
plexity of the orbit-generating function in particular. 
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